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Abstract. Graph convolutional networks (GCNs) have attracted
much attention and become a powerful tool for graph data analysis.
However, recent studies show that these methods are vulnerable to
adversarial attacks (e.g. changing node attributes). Although several
works have proposed to improve the robustness of GCNs, only a few
works address their provable robustness. In this work, we propose a
novel Abstract Interpretation (AI) based method for scalable robust-
ness certification of graph convolutional networks. Different from
the AI-based certification in the image classification task whose data
is continuous, the considered perturbation on node attributes in this
paper is binary. To address this challenge, our central idea is to over-
approximate all possible perturbations of the first layer output instead
of the input layer. Abstract transformers for graph convolutional op-
erations are further defined to prove the robustness automatically. Ex-
perimental results on three public graph datasets demonstrate that our
method is faster than the state-of-the-art certification approach.

1 Introduction

Many real-world applications are built on graph data including so-
cial networks [11], citation networks [3], heterogeneous information
networks [2, 22] and so on. Among these applications, node classi-
fication is one of fundamental tasks which aims to predict the class
label of nodes. Over the last few years, graph convolutional networks
(GCNs) [10] have become increasingly popular and achieved state-
of-the-art on the node classification. Multiple safety critical node
classification tasks such as disease prediction [15] and malicious ac-
count detection [12] have adopted GCNs to make decisions. There-
fore, it is important to ensure the predicted result is reliable.

Unfortunately, recent studies [26, 25, 5] show that GCNs are vul-
nerable to adversarial attacks. By slightly changing nodes’ features
or graph structures, two very similar nodes are classified into differ-
ent classes. Worse still, since GCNs utilize neighbors’ information to
make predictions, even perturbing features of the target node’s neigh-
bors can lead to the wrong prediction [25]. The unreliable results of-
fer the opportunity for attackers to exploit these vulnerabilities and
restrict applications of GCNs.

In this work, we tackle a fundamental challenge: how to ensure
that small changes to node features do not change its label? Specif-
ically, given a trained GCN, a node is certifiably robustness if it is
proved that no perturbations w.r.t. a certain space of perturbations
can change the node’s label (i.e., predicted result). Here we consider
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perturbations on node features and the data space is binary/discrete.
Although several works [23, 24] have proposed to improve the ro-
bustness of graph convolutional networks such as adversarial train-
ing [23], few works have considered analyzing the provable robust-
ness of the GCN. So far, there is only one work [27] studying the
provable robustness of GCNs. To give robustness certificates to a
node, they compute the worst case margin between the predicted
class and all other classes achievable under admissible perturbations
to the node attributes. If all the worst case margins are positive,
then no adversarial examples (within the defined admissible pertur-
bations) can change the prediction of the node. They show that the
computation of a target node’s margins can be interpreted as a back-
ward pass on a sliced GCN which only contains the l-hop neigh-
bors of the target node (suppose the GCN has l layers). However,
such method suffers the efficiency problem. Although only a small
number of nodes can not be certificated by the current verifier [27],
according to their work, to certificate nodes of GCNs, the time com-
plexity of current verifier is related to the number of nodes and edges
in graph which is inefficient.

To address above problems, we propose to prove the robust-
ness of graph convolutional networks via abstract interpretation
(AI) [4] which has gained much attention and been adopted to cer-
tificate the robustness of fully connected and convolutional neural
networks [6, 18, 17, 14] on the image classification task. Compared
to the work [27], the AI-based verifier performs a “forward” pass
through GCNs. The idea is to check the output of all possible pertur-
bations. If all these outputs are classified into the same class of the
target instance, then the input data (e.g. an image) is certifiably ro-
bust. Nevertheless, the set of possible perturbations is usually large,
leading to high time complexity to check the robustness. To avoid
this, abstract interpretation verifies the robustness on an overapprox-
imation of the perturbation set, which is called abstract domain. The
common choices of abstract domains include interval and zonotopes.
The defined abstract domain is then propagated through the neural
network to obtain an overapproximation of all possible outputs. Fi-
nally the robustness is checked on the overapproximation outputs. If
the lower bounds between the predicted class and other classes are
positive, then the input data is certifiably robustness since even in
the worst case the value of the predicted class is higher then other
classes.

Based on the abstract interpretation, we can improve the efficiency
of the verifier. Abstract domains and transformers for GCNs are de-
fined to prove the robustness of GCNs. Instead of replacing the `0
constraints perturbations to `1 constraints, the abstract domains of
the first layer’s output is proposed to overapproximate the effect of
all possible perturbations. The interval domain is employed to mea-
sure the range of each component of the first layer’s output under
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Figure 1. The illustration of abstract interpretation. The points denote the
real elements and the rectangles (i.e. A1 and A2) represent the interval

domain which overapproximate the real elements.

perturbations. These bounds are then transformed via the GCN to
obtain the intervals of the predication layer. To further enhance ef-
ficiency, the matrix-form propagation rule is proposed to transform
the domains of all nodes. We first define the lower and upper bound
matrices (i.e. input abstract domain for all nodes) and demonstrate
that the abstract domains of the entire nodes can be transformed to-
gether without slicing the input data. The experimental results show
that our methods spend less time to give robustness certificates to
nodes compared to the state-of-the-art verifier.

To summarize, this paper makes the following contributions.

• We propose a novel method for the provable robustness of GCNs
based on abstract interpretation.

• We present a matrix-form propagation rule to efficiently certificate
the robustness of nodes.

• Extensive experiments conducted on three public graph datasets
demonstrate our methods spend less time to verify the robustness
of GCNs.

2 Preliminaries
In this section, two important concepts of the abstract interpretation
(i.e. the abstract domain and abstract transformer) are firstly pre-
sented. Then we elaborate the formulation of GCNs and define the
problem of robustness verification. For notations, we use bold up-
percase letters to denote matrices (e.g., W ), bold lowercase letters
to denote vectors (e.g., w), and non-bold letters to denote scalars or
indices (e.g.,w). The uppercase calligraphic symbols (e.g.,W) stand
for sets.

Abstract Interpretation Let f : Rd → Rk denote the GCN with
d input features and k output classes. Note that perturbations can ei-
ther be added on x’s and its neighbors’ features. We employ Pq(X)
be the set of all q ∈ N possible binary perturbations for the target
node x ∈ Rd. q is the perturbation budget. The goal is to verify
whether f assigns the same class of the target node to all possible
perturbed feature matrices X̂ ∈ Pq(X). The challenge is that it
is not practical to enumerate all points in Pq(X) to verify the ro-
bustness. To remedy this, abstract interpretation is adopted to obtain
sound, computable, and precise finite approximations of these poten-
tially infinite sets of perturbed points.

Two components are needed to define for abstract interpretation:
(1) a suitable abstract domain D which overapproximates the set
Pq(X). There are multiple choices of the abstract domain such as In-
terval (also called Box), Zonotope, and Polyhedral domain [6]. In our
work, the interval domain is adopted which is significantly faster than
the zonotope and polyhedral domain [14]. Moreover, since the major

operations in GCNs are multiplication and addition, it is efficient for
the transformation of Interval domains to parallelize on GPU [14].
The interval domain represents a d-dimensional box which consists
of constraints of the form s < xi < t where s, t ∈ R is the lower
and upper bound of the interval and xi is the i-th component of x. (2)
abstract transformers which overapproximates the effect of the GCN
f . Abstract transformers are applied on abstract domains to obtain an
output abstract domains which capture transformations of the GCN
function f . Thus, the robustness can be checked on the abstract do-
main of final layer returned by abstract transformers.

Figure 1 is a high-level illustration of abstract interpretation where
the area A1 and A2 represent the input and output abstract domain.
The points represent all the possible inputs and outputs under ad-
missible perturbations, respectively. From the figure, we can observe
that both A1 and A2 overapproximate the real perturbation set and
the neural network will change the shape of abstract domains. There-
fore, if we can prove that all points in entire area A2 are the same
class, then the input data is certifiably robustness w.r.t. the model.

Graph Convolutional Networks Follow the previous work [27],
we introduce our method under the context of node classification.
The purpose of graph convolutional networks is to leverage the struc-
ture information into the neural networks. A GCN could be for-
mally formulated as follows: Given an undirected attributed graph
G = (A,X) that has n nodes, with A ∈ {0, 1}n×n denoting the
adjacency matrix and X ∈ {0, 1}n×d representing the nodes’ bi-
nary feature where d is the feature dimension, the l-th hidden layer
of GCN [10] is defined as:

H(l) = σ(ÂH(l−1)W (l−1)), (1)

where Â = D−
1
2 (A + I)D−

1
2 and I ∈ Rn×n is the identity

matrix. D represents the degree matrix where the i-th entry dii =∑
j aij , W (l) ∈ Rd(l−1)×d(l) is a trainable weight matrix of layer l

which learns useful features and transforms the embedding size from
d(l−1) to d(l), and σ(·) denotes the activation function, which we set
as ReLU [7] in this paper. Initially,H(0) =X . The GCN is learned
by minimizing the cross-entropy loss on given training label nodes.

Problem Definition Similar to the previous work, we consider the
situation that the input node features are discrete/binary. To certifi-
cate the robustness of a node, margins between the predicted class
and other classes are needed to compute. Formally, the problem are
defined as follows:

Problem 1 Given a graph G, a trained model f , a target node t, a
perturbation budget q, let yt denotes the predicted class of node t and
ht denotes the model prediction for node t. The worst-case margin
between class yt and class c under all possible perturbations Pq(X)
is:

mt
yt,c = min

X̂∈Pq(X)
ht
yt − h

t
c (2)

If mt
yt,c > 0 for all c 6= yt, the node t is certifiably robust w.r.t. the

model f and the perturbation space Pq(X).

From Problem 1, if all mt
yt,c (the predicted class and other classes)

are positive, there is no adversarial example in perturbation space
Pq(X) can changes the prediction of model f .
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3 Method
In this section, we elaborate how to obtain the interval of mt

yt,c in
Problem 2. Specifically, mt

yt,c can be computed as follows:

mt
yt,c = min

X̂∈Pq(X)
ÂĤδ, (3)

where Ĥ denote the output before the prediction layer and δ =
wyt −wc.wc is the c-th column of the final layer matrix. The lower
bound of mt

yt,c can be computed via interval arithmetic [6]. We first
introduce how to define the input interval (i.e. abstract domain) and
then show that how these intervals transform through a GCN layer.

3.1 Specifying the Abstract Domain
In the image classification task, the perturbations are often consid-
ered as `∞-ball of radius ε. Thus, the abstract domain for a point x
(e.g. an image.) can be defined as {xi− ε ≤ xi ≤ xi + ε}di=1. How-
ever, such a solution is not work for the considered data whose per-
turbation is binary (i.e. {−1, 1}). If the method is applied to the input
features, the resulting perturbation space is {0 ≤ xi ≤ 1}di=1 which
contains all possible inputs and leads to an inaccurate domain. To ad-
dress this problem, instead of directly specifying the abstract domain
on input features, we measure each output component’s intervals of
the first GCN layer. We first show how to compute a specific compo-
nent h of the first layer’s hidden representation of a certain node v,
then we measure the range of h. To better illustrate our method, the
computation of h is split into two steps – aggregating the features of
the node and its neighbors and transforming the aggregated feature
to a hidden representation.

xagg =
∑

v′∈N (v)

âvv′xv′ , (4)

h = xaggw, (5)

where h ∈ R is one of the components of node v’s first layer output
andw ∈ Rd×1 is the corresponding column of weight matrixW (0).
N (v) denotes the set of the node v’s neighbors and v itself. âvv′
is the weight between the node v and v′. Specifically, the weight is
defined as follows:

âvv′ =
1√

|N (v)||N (v′)| (6)

Note that âvv′ is always positive. Here we omit the ReLU activation
function and discuss it later in section 3.2.

After obtaining the result of h, we can measure the range of it
now. The insight behind our method is that perturbations on binary
features can only change the zero component to one or change the
one component to zero. Therefore, the change of h w.r.t a perturba-
tion on a specific component (node v’s or its neighbor’s) can be mea-
sured according to equation (4) and (5). Let xi denotes the perturbed
component on node vp, then the change of h is:

δ =

{
âvvp × wi xi = 0

−âvvp × wi xi = 1
, (7)

where wi represents the corresponding i-th component of w. With
this definition, the upper (lower) bound of h under q perturbation is
h plus the sum of top-q maximum (minimum) changes:

h+ q smallest δ ≤ h ≤ h+ q largest δ (8)
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Figure 2. A running example of how to measure the range of component
h. The perturbation budget q is equal to 1.

To further reduce the computation budget, we first treat all compo-
nents of a node and its neighbors’ features perturbable. Then the sum
of top-q maximum (minimum) changes is relaxed by q times the
maximum (minimum) changes. The resulting abstract domain can
be specified as follows:

h+ q × δmin ≤ h ≤ h+ q × δmax, (9)

where δmin is the minimum of all possible changes. Analogously,
δmax is the maximum of all possible changes. Therefore, to compute
the interval of h, we only need to find the maximum (minimum) of
â andw.

Figure 2 displays a running example where the number of pertur-
bations q = 1. As can be seen from the figure, without the pertur-
bation, the output h is equal to 0.1. The second row illustrates the
computation of h’s possible changes. The blue components denote
perturbations changed from 0 and the orange components denote per-
turbations changed from 1. The last row demonstrates the results of
maximum and minimum changes and the resulting interval. As we
can see, the lower bound is 0.1−0.6 = −0.5 and the upper bound is
0.1 + 0.2 = 0.3. Note that it is unnecessary to compute all changes
in implementation. The computation process is shown to better illus-
trate our method.

3.2 Abstract Transformers for GCN

Suppose we have obtained the node v’s intervals {s(l)i ≤ h
(l)
i ≤

t
(l)
i }

d(l)

i=1 of the layer l’s hidden representations h(l) ∈ Rd′ , the
goal is to compute the next layer’s intervals {s(l+1)

i ≤ h
(l+1)
i ≤

t
(l+1)
i }d

(l+1)

i=1 so that after specifying the abstract domain of the first
layer, the intervals of predication layer can be computed automati-
cally. Similar to section 3.1, the computation of h(l+1)

i ∈ Rd′′ is
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Figure 3. A running example of three define abstract transformers for neighbor aggregation, affine transformation, and ReLU activation. For better
illustration, we use number subscripts to denote each component and its lower and upper bounds.

split into three steps:

h(l)
agg =

∑
v′∈N (v)

âvv′h
(l)

v′ , (10)

h
(l)
affine = h

(l)
aggw

(l), (11)

h(l+1) = ReLU(h
(l)
affine), (12)

where h(l)
agg ∈ Rd(l) , h(l)

affine, h
(l+1) ∈ R represents the hidden rep-

resentation after neighbor aggregation, affine transformation, and
ReLU activation, respectively. w(l) ∈ Rd(l)×1 is a certain column
of the l-th layer weighted matrix W (l). Here the subscript i is omit-
ted for simplicity. Now we define three abstract transformers which
corresponding to the above computation steps.

Neighbor Aggregation Abstract Transformer The neighbor ag-
gregation step is equal to the weighted addition of a node and its
neighbors’ representations. Since the weight âvv′ is always greater
than zero, the neighbor aggregation abstract transformer can be de-
fined as follows:

s(l)agg =
∑

v′∈N (v)

âvv′s
(l)

v′ , (13)

t(l)agg =
∑

v′∈N (v)

âvv′t
(l)

v′ , (14)

where s(l)agg and t(l)agg is the lower and upper bound after aggregation.

Affine Abstract Transformer Letw(l)
j ∈ R denotes the j-th com-

ponent of w(l). Then, the lower and upper bounds of h(l)
affine after the

transformation are:

s
(l)
affine =

∑
1≤j≤d(l)

(max(0, w
(l)
j )× s(l)agg +min(w

(l)
j , 0)× t(l)agg),

(15)

t
(l)
affine =

∑
1≤j≤d(l)

(max(0, w
(l)
j )× t(l)agg +min(w

(l)
j , 0)× s(l)agg),

(16)
where d′ represents the dimension size ofw(l).

ReLU Abstract Transformer For each input x ∈ R, the recti-
fied linear unit (ReLU) activation function is defined as ReLU(x) =
max(0, x). We apply the ReLU function to each component of the
above transformed results.

[s(l+1), t(l+1)] =


[s

(l)
affine, t

(l)
affine] s

(l)
affine ≥ 0

[0, 0] t
(l)
affine ≤ 0

[0, t
(l)
affine] s

(l)
affine < 0, t

(l)
affine > 0

(17)

In the implementation, the bounds s(l)affine and t(l)affine are directly fed to
a ReLU function to generate the next layer’s bounds. Note that for
the prediction layer, the ReLU function is omitted.

Figure 3 is a simple running example of the entire transforma-
tion where the feature dimension size is 2. As the figure shows, the
lower bound s7 and upper bound t7 are firstly aggregated by specific
weights:

s7 = 0.1× s1 + 0.2× s3 + 0.1× s5
t7 = 0.1× t1 + 0.2× t3 + 0.1× t5

(18)

The bounds of h8 are aggregated in the same way. Then these bounds
are transformed by a weighted matrix:

s7 − 2× t8 ≤ h9 ≤ t7 − 2× s8
−1× t7 + 2× s8 ≤ h10 ≤ −1× s7 + 2× t8

(19)

Theses bounds are fed to a ReLU activation function to generate the
next layer’s bound:

ReLU(s9, 0) ≤ h11 ≤ ReLU(t9, 0)

ReLU(s10, 0) ≤ h12 ≤ ReLU(t10, 0)
(20)

Note that if this layer is the prediction layer, the intervals of mt
yt,c

can be obtained. If the lower bound of mt
yt,c is positive, then no

perturbations in the considered perturbation space can change the
prediction from class yt to c. The target node is certifiably robust if
mt

yt,c is positive between yt and all other class c.

3.3 Matrix-Form Abstract Interpretation
To offer a holistic view of the abstract interpretation for GCNs, we
follow the previous work [10] and provide a matrix-form of overall
steps. The central idea is to maintain all nodes’ bounds of each layer.
Firstly, the initial lower bound matrix S ∈ Rn×d and upper bound
matrix T ∈ Rn×d are constructed according to Section 3.1. Then
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these matrices are fed to the ReLU activation function to obtain the
interval of the first layer output.

S(1) = ReLU(S), (21)

T (1) = ReLU(T ), (22)

where S(1) ∈ Rn×d and T,T (1) ∈ Rn×d represent the matrices of
all nodes’ lower and upper bounds before and after ReLU activation,
respectively. âmax ∈ Rn×1 and âmin ∈ Rn×1 are the column-wise
maximum and minimum elements. Similarly,wmin,wmax ∈ R1×d

denote the row-wise minimum and maximum elements ofW (1), re-
spectively.

Follow the description of section 3.2, after obtaining the matrix-
form bounds of layer l, we aim to compute the bounds of the next
layer. The corresponding matrix-form neighbor aggregation abstract
transformer is defined as:

S(l)
agg = ÂS(l), (23)

T (l)
agg = ÂT (l), (24)

where A is the adjacency matrix. Next the corresponding matrix-
form affine abstract transformer is:

S
(l)
affine = S

(l)
agg ×max(W (l), 0) + T (l)

agg ×min(W (l), 0) (25)

T
(l)
affine = T

(l)
agg ×max(W (l), 0) + S(l)

agg ×min(W (l), 0) (26)

Here, the min and max function represent the element-wise minimum
and maximum which does not change the shape of W (l). Finally, if
the l-th layer is not the prediction layer, the ReLU abstract trans-
former is applied to the generated matrix-form bounds:

S(l+1) = ReLU(S(l)), (27)

T (l+1) = ReLU(T (l)), (28)

where S(l+1) and T (l+1) are the next layer’s lower and upper bound
matrix. Finally, the robustness of GCNs can be checked on output
lower bound matrices.

4 Experiments
4.1 Experimental Settings
Dataset The experiments are conducted on three widely used

datasets: Cora ML [13], Citeseer [16], and PubMed [16]. Dataset
statistics are summarized in Table 1. Following the previous
work [27], the datasets are split into 10% training labeled and 90%
testing unlabeled nodes.

Baseline and metric We compare our method with the only exist-
ing robustness certification [27] whose code3 is provided by authors.
Different from the work [27], we jointly consider the local (perturb
features of the target node) and global (perturb features of all nodes)
perturbations. Through setting the same value of local and global per-
turbation budget of the existing certificate [27], we obtain the same
problem in our work. We refer our method built on Equation (8) and
Equation (9) as Ours-1 and Ours-2. To compare the robustness of
models, we display the average of nodes’ largest q that they can be
certifiably robust.

3 https://www.kdd.in.tum.de/robust-gcn

Parameter setting The hyperparameter settings are the same as
the baseline model [27]. Stochastic gradient descent with mini-
batches and Adam Optimizer [9] are used to train GCN models where
the batch size is set to 8. The dropout ratio, L2 regularization and
learning rate are set to 0.5, 0.00001, 0.001, respectively. The dimen-
sion of the (l+ 1)-th layer is half of the (l)-th layer while we set the
dimension of the first hidden layer to 8. Our method is implemented
using Pytorch 1.2.0 and all experiments are run in NVIDIA GeForce
RTX 2080ti GPU.

Table 1. The statistics of datasets.

Dataset #Node #Edge #Feature #Class

Cora-ML 2,995 8,416 2,879 7
Citeseer 3,312 4,715 3,703 6
PubMed 19,717 44,324 500 3

4.2 Performance Comparison

Overall performance comparison Table 2 displays the overall
performance comparison between our methods and baseline model.
The avg-time is the average runtime of certificating all nodes under
different perturbation budget q. From Table 2, we observe that our
method are significantly faster than the baseline model. For example,
ours-1 is 24, 16, and 15 times faster than the baseline model on Cora-
ml, Citeseer, and PubMed, respectively. Meanwhile, the avg-max q
of ours-1 is half of the baseline model. This can be attributed to the
matrix-form propagation rule of our method. The gap of avg-max q
can be attributed to that we treat each hidden unit independently.

Table 2. Overall performance comparison.

Dataset Method Acc. Metric
Avg-max q Avg-time (s)

Cora-ML
Baseline

0.84
16.82 24.38

Ours-1 7.26 <1
Ours-2 6.34 <1

Citeseer
Baseline

0.70
6.75 16.53

Ours-1 3.79 1
Ours-2 3.35 <1

PubMed
Baseline

0.86
9.65 89.73

Ours-1 5.78 6
Ours-2 5.10 1

Certification performance w.r.t. q To further investigate the cer-
tification performance of different methods, we plot the number of
certifiably robust nodes in Figure 4. As can be seen from the figure,
when the perturbation budget q is small, the number of certifiably ro-
bust nodes of all methods is almost the same. With q increasing, the
performance of our methods drops faster than the baseline model.

Certification time w.r.t. q To investigate the certification time
w.r.t. the perturbation budget, we plot the runtime in Figure 5. From
Fig. 5, we can observed that AI-based methods spend much less time
than the baseline model. Moreover, when the number of perturba-
tions increases, the runtime of our methods remains almost the same
while the runtime of the baseline model tends to increase.
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Figure 4. The performance comparison w.r.t the number of perturbations. Our methods generally outperform the baseline model in most cases.
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Figure 5. The runtime comparison w.r.t. the number of perturbations. Our methods are faster than the baseline model and the runtime will not increase when
the number of perturbations increases.

5 Related Work

In this work, we develop a AI-based robustness certification frame-
work for GCNs. Thus, we categorize previous studies related to our
work into two categories: adversarial robustness for GCNs and AI-
based robustness certification.

Adversarial robustness for GCNs Adversarial perturbations on
image classification [8, 20] have been studied extensively. In re-
cent years, multiple works [26, 25, 5, 1] show that graph convolu-
tional networks are vulnerable to small designed perturbations (i.e.
add/drop edges or change node attributes) as well. NETTACK [25] is
the first work of adversarial attacks on graph convolutional networks.
It firstly performs attacks on a surrogate model, then the generated
perturbations are transferred to the real model. Following this work,
METATTACK [26] is proposed to decrease the overall performance
of graph convolutional networks. RL-S2V [5] considers black-box
attacks via reinforcement learning.

To resist such attacks, several heuristic approaches [23, 21, 24]
are proposed recently. These methods can be classified to adversar-
ial training [23], malicious edge detection [21] and uncertainty es-
timation [24]. Although these methods empirically show that they
improve GCNs’ robustness against certain types of adversarial at-
tacks, they can not verify the robustness w.r.t a certain space of per-
turbations. Considering this situation, the first robustness certificate

is proposed by the work [27] and they further develop robust training
method for GCNs based on the certificate.

Different from the works focus on improving the robustness of
graph convolutional networks, in this work, the target is to propose
a robustness analyzer of the GCN itself. Compare with the existing
robustness verifier [27], we employ a different overapproximate strat-
egy which is shown fast and effective.

AI-based robustness certification For formal verification of fully
connected or convolutional neural network’s robustness, the most re-
lated methods are abstract interpretation based verifiers [6, 18, 17,
14, 19]. Different from existing works which focus on the pertur-
bations on continuous features, the perturbations of the discrete do-
main are `0 constraints. Therefore, it is hard to define an abstract
domain to capture all perturbed inputs. Furthermore, there are no
works on transforming the defined abstract domain through graph
convolutional layers so far. In this work, we shed light on these prob-
lems. Instead of estimating the domain of input features, the possi-
ble perturbations are captured by the output of the first GCN layer.
The interval domain is employed to approximate the perturbations of
each layer and we define how the interval domain transforms through
graph convolutional layers.
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6 Conclusion and Future Work
In this work, we present a novel and efficient robustness certification
method for graph convolutional networks based on abstract interpre-
tation. The core idea is to first define the abstract domain which over-
approximates the effect of perturbations and then propagate the ab-
stract domain to obtain the lower and upper bounds of each class. We
propose a novel method to specify the abstract domain for binary fea-
tures and define a set of abstract transformers for graph convolutional
networks. Furthermore, a matrix-form propagating rule is developed
to efficiently compute the lower and upper bounds of all nodes. Ex-
tensive experiments performed on three graph datasets demonstrate
the effectiveness of our method.

In future, we plan to extend our work in following directions: (1)
Although the interval domain is fast, existing works [17, 14] have
demonstrated that the zonotope domain is more precise. Therefore,
we will try to improve the precision of AI-based certification using
the zonotope domain. (2) How to improve the robustness based on
the certification method is another important problem. We aim to de-
velop a robust training algorithm based on this work. (3) Besides
adversarial feature attacks, graph convolutional networks also suffer
the adversarial structure attacks which change the node prediction
by modifying the graph structure. Thus, we will address the problem
of how to verify a node’s robustness under the structure perturbation
based on abstract interpretation in future.
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Vechev, ‘An abstract domain for certifying neural networks’, PACMPL,
3(POPL), 41:1–41:30, (2019).

[19] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev,
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